Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
Biomed J ; : 100730, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643825

RESUMO

BACKGROUND: Mitochondrial dysfunction is a critical factor in the pathogenesis of acute kidney injury (AKI). Agents that ameliorate mitochondrial dysfunction hold potential for AKI treatment. The objective of this study was to investigate the impact of olesoxime, a novel mitochondrial-targeted agent, on cisplatin-induced AKI. METHODS: In vivo, a cisplatin-induced AKI mouse model was established by administering a single intraperitoneal dose of cisplatin (25 mg/kg) to male C57BL/6 mice for 72 hours, followed by gavage of either olesoxime or a control solution. In vitro, human proximal tubular HK2 cells were cultured and subjected to treatments with cisplatin, either in the presence or absence of olesoxime. RESULTS: In vivo, our findings demonstrated that olesoxime administration significantly mitigated the nephrotoxic effects of cisplatin in mice, as evidenced by reduced blood urea nitrogen (BUN) and serum creatinine (SCr) levels, improved renal histopathology, and decreased expression of renal tubular injury markers such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, olesoxime administration markedly reduced cisplatin-induced apoptosis, inflammation, and oxidative stress in the kidneys of AKI mice. Additionally, olesoxime treatment effectively restored mitochondrial function in the kidneys of AKI mice. In vitro, our results indicated that olesoxime treatment protected against cisplatin-induced apoptosis and mitochondrial dysfunction in cultured HK2 cells. Notably, cisplatin's anticancer effects were unaffected by olesoxime treatment in human cancer cells. CONCLUSION: The results of this study suggest that olesoxime is a viable and efficient therapeutic agent in the treatment of cisplatin-induced acute kidney injury presumably by alleviating mitochondrial dysfunction.

2.
J Am Soc Nephrol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502123

RESUMO

BACKGROUND: Renal fibrosis is a common pathological endpoint in CKD that is challenging to reverse, and myofibroblasts are responsible for the accumulation of a fibrillar collagen-rich extracellular matrix (ECM). Recent studies have unveiled myofibroblasts diversity in terms of proliferative and fibrotic characteristics, which are linked to different metabolic states. We previously demonstrated the regulation of ECM genes and tissue fibrosis by WWP2, a multifunctional E3 ubiquitin-protein ligase. Here, we investigate WWP2 in renal fibrosis and in the metabolic reprograming of myofibroblasts in CKD. METHODS: We used kidney samples from CKD patients and WWP2 -null kidney disease mice models, and leveraged single cell RNA-seq analysis to detail the cell-specific regulation of WWP2 in fibrotic kidneys. Experiments in primary cultured myofibroblasts by bulk-RNA seq, ChIP-seq, metabolomics and cellular metabolism assays, were used to study the metabolic regulation of WWP2 and its downstream signaling. RESULTS: The tubulointerstitial expression of WWP2 was associated with fibrotic progression in CKD patients and in murine kidney disease models. WWP2 deficiency promoted myofibroblast proliferation and halts pro-fibrotic activation, reducing the severity of kidney fibrosis in vivo . In renal myofibroblasts, WWP2 deficiency increased fatty acid oxidation and activated the pentose phosphate pathway, boosting mitochondrial respiration at the expense of glycolysis. WWP2 suppressed the transcription of PGC-1α, a metabolic mediator of fibrotic response, and pharmacological inhibition of PGC-1α partially abrogated the protective effects of WWP2 deficiency on myofibroblasts. CONCLUSIONS: WWP2 regulates the metabolic reprogramming of profibrotic myofibroblasts by a WWP2-PGC-1α axis, and WWP2 deficiency protects against kidney fibrosis in CKD.

3.
Biochem Biophys Res Commun ; 709: 149807, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552554

RESUMO

Minimal Change Disease (MCD), which is associated with podocyte injury, is the leading cause of nephrotic syndrome in children. A considerable number of patients experience relapses and require prolonged use of prednisone and immunosuppressants. Multi-drug resistance and frequent relapses can lead to disease progression to focal and segmental glomerulosclerosis (FSGS). To identify potential targets for therapy of podocyte injury, we examined microarray data of mRNAs in glomerular samples from both MCD patients and healthy donors, obtained from the GEO database. Differentially expressed genes (DEGs) were used to construct the protein-protein interactions (PPI) network through the application of the search tool for the retrieval of interacting genes (STRING) tool. The most connected genes in the network were ranked using cytoHubba. 16 hub genes were selected and validated by qRT-PCR. RAC2 was identified as a potential therapeutic target for further investigation. By downregulating RAC2, Adriamycin (ADR)-induced human podocytes (HPCs) injury was attenuated. EHT-1864, a small molecule inhibitor that targets the RAC (RAC1, RAC2, RAC3) family, proved to be more effective than RAC2 silencing in reducing HPCs injury. In conclusion, our research suggests that EHT-1864 may be a promising new molecular drug candidate for patients with MCD and FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Podócitos , Criança , Humanos , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/genética , Doxorrubicina/efeitos adversos , Glomérulos Renais , Recidiva
4.
Int Urol Nephrol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493270

RESUMO

BACKGROUND: Vascular calcification (VC) is highly prevalent and predicts cardiovascular mortality in dialysis patients. The mechanisms are still unclear. Inflammation is a well-known inducer of VC. YKL-40 has been suggested as a novel biomarker of inflammation and has been demonstrated to be associated with cardiovascular mortality in hemodialysis patients. This study aims to evaluate the relationship between serum YKL-40 and VC in hemodialysis (HD) patients. METHODS: A total of 109 HD patients and 31 healthy controls were enrolled in the study from September 2014 to December 2014. We evaluated the abdominal aortic calcification (AAC) score by plain X-ray films of the abdomen and measured serum YKL-40 concentrations using enzyme-linked immunosorbent assay. We also examined the relationship between YKL-40 levels and AAC scores in HD patients. RESULTS: Serum YKL-40 levels in HD patients were significantly higher than those in healthy controls [199.8 (144.8, 288.7) vs. 71.9 (52.8, 89.3) ng/ml; P < 0.001]. There was a tendency that YKL-40 levels in diabetic hemodialysis patients were higher than those in nondiabetic patients [217.8 (155.3, 335.8) vs. 192.9 (135.9, 274.4) ng/ml; P = 0.093]. A significant positive correlation was found between serum YKL-40 level and AAC score in these patients (r = 0.410, P = 0.003). Multiple regression analysis showed that Ln(YKL-40) was independently associated with AAC score in HD patients (P = 0.044). CONCLUSION: This study showed high serum YKL-40 concentrations in chronic HD patients and that YKL-40 was independently associated with increased AAC in hemodialysis patients.

5.
Mar Drugs ; 22(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535479

RESUMO

Phycoerythrin and polysaccharides have significant commercial value in medicine, cosmetics, and food industries due to their excellent bioactive functions. To maximize the production of biomass, phycoerythrin, and polysaccharides in Porphyridium purpureum, culture media were supplemented with calcium gluconate (CG), magnesium gluconate (MG) and polypeptides (BT), and their optimal amounts were determined using the response surface methodology (RSM) based on three single-factor experiments. The optimal concentrations of CG, MG, and BT were determined to be 4, 12, and 2 g L-1, respectively. The RSM-based models indicated that biomass and phycoerythrin production were significantly affected only by MG and BT, respectively. However, polysaccharide production was significantly affected by the interactions between CG and BT and those between MG and BT, with no significant effect from BT alone. Using the optimized culture conditions, the maximum biomass (5.97 g L-1), phycoerythrin (102.95 mg L-1), and polysaccharide (1.42 g L-1) concentrations met and even surpassed the model-predicted maximums. After optimization, biomass, phycoerythrin, and polysaccharides concentrations increased by 132.3%, 27.97%, and 136.67%, respectively, compared to the control. Overall, this study establishes a strong foundation for the highly efficient production of phycoerythrin and polysaccharides using P. purpureum.


Assuntos
Gluconatos , Porphyridium , Ficoeritrina , Gluconato de Cálcio , Polissacarídeos
6.
Sci Total Environ ; 923: 171398, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442753

RESUMO

Methylmercury (MeHg), as a global environmental pollutant, is of concern globally due to its neurodevelopmental toxicity. Mitochondria-associated membranes (MAMs) are highly dynamic sites of endoplasmic reticulum (ER)-haemocyte contact. MAMs are closely associated with the pathophysiology of neurological disorders due to their role in the transfer of calcium ions (Ca2+) between mitochondria and the ER. However, the molecular mechanisms that control these interactions in MeHg-induced neurotoxicity have not yet been characterized. In the current study, MeHg caused increases in the levels of both cytosolic and mitochondrial Ca2+ in PC12 cells and promoted MAMs formation in both in vivo and in vitro experiments. Of note, MeHg perturbed mitochondrial dynamics, promoting a shift toward a fission phenotype, and this was supported by the dysregulation of fission regulators. Interestingly, the MeHg-induced promotion of MAMs formation and increase in Ca2+ levels were effectively attenuated by the inhibition of mitochondrial fission using Mdivi-1, a DRP1 inhibitor. Furthermore, MeHg triggered the AMPK pathway, and most of the aforementioned changes were significantly rescued by Compound C. Mechanistic investigations revealed a reciprocal relationship between AMPK- and Ca2+-mediated mitochondrial fission. The specific inhibitor of Ca2+ uniporter, ruthenium-red (RuR), effectively abolished the feedback regulation of mitochondrial dynamics and MAMs formation mediated by AMPK in response to MeHg-induced Ca2+ overload. This study reveals a novel role of AMPK-DRP1-mediated mitochondrial fragmentation in the coupling of ER-mitochondrial calcium microdomains in MeHg-induced neurotoxicity. The findings provide valuable insights for the development of strategies to regulate mitochondrial imbalances in neurological diseases.


Assuntos
Cálcio , Compostos de Metilmercúrio , Ratos , Animais , Cálcio/metabolismo , Dinâmica Mitocondrial , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias , Retículo Endoplasmático/metabolismo , Homeostase
7.
Burns Trauma ; 12: tkad045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444637

RESUMO

Background: Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism. Methods: C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected in vitro. Results: Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5+ intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. In vitro, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages. Conclusions: Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38450435

RESUMO

Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and UPR, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the crosstalk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondrial-related clinical research.

9.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471343

RESUMO

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Assuntos
Arsênio , 60541 , Ginkgo biloba , Humanos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Cromatografia Líquida , 60705 , Arsênio/toxicidade , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
10.
Kidney Dis (Basel) ; 10(1): 61-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322629

RESUMO

Introduction: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of end-stage kidney disease in children, mostly associated with focal segmental glomerulosclerosis (FSGS). Advances in genomic science have enabled the identification of causative variants in 20-30% of SRNS patients. Methods: We used whole exome sequencing to explore the genetic causes of SRNS in children. Totally, 101 patients with SRNS and 13 patients with nephrotic proteinuria and FSGS were retrospectively enrolled in our hospital between 2018 and 2022. For the known monogenic causes analysis, we generated a known SRNS gene list of 71 genes through reviewing the OMIM database and literature. Results: Causative variants were identified in 23.68% of our cohort, and the most frequently mutated genes in our cohort were WT1 (7/27), NPHS1 (3/27), ADCK4 (3/27), and ANLN (2/27). Five patients carried variants in phenocopy genes, including MYH9, MAFB, TTC21B, AGRN, and FAT4. The variant detection rate was the highest in the two subtype groups with congenital nephrotic syndrome and syndromic SRNS. In total, 68.75% of variants we identified were novel and have not been previously reported in the literature. Conclusion: Comprehensive genetic analysis is key to realizing the clinical benefits of a genetic diagnosis. We suggest that all children with SRNS undergo genetic testing, especially those with early-onset and extrarenal phenotypes.

11.
Food Sci Biotechnol ; 33(4): 935-944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371687

RESUMO

Arsenic can cause immune inflammation, which is the basis of arsenic-induced damage to multiple organs and systems. Forkhead box P3 (Foxp3)-labelled CD4+CD25+ regulatory T cells (Tregs) play an essential role in maintaining immune homeostasis. Nuclear factor-κb (NF-κB) and Interleukin-2 (IL-2) are critical regulators of Foxp3. Rosa roxburghii Tratt (RRT) is an edible medicinal plant with anti-inflammation effects. In this study, a control group (n = 41) and an arseniasis group (n = 209) were recruited, and screened subjects from the arseniasis patients for RRTJ (n = 46) or placebo (n = 43) to explore the possible mechanism by which RRT alleviates immune inflammation. The results indicated that RRTJ can inhibits NF-κB and increases IL-2, and alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. In summary, these findings suggest a novel intervention or therapeutic target for immune inflammation in arseniasis patients and provide new evidence that RRTJ inhibits immune inflammation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01384-0.

12.
ACS Omega ; 9(6): 7173-7187, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371803

RESUMO

Bimetallic metal-organic frameworks (BMOFs) have garnered significant attention in the field of environmental remediation due to their more diverse adsorption sites compared to monometallic metal-organic frameworks (MOFs). Different energy barriers must be overcome for different metal ions and organic linkers to form MOFs. However, the impact of the synthesis temperature on the crystallization and porosity structure of BMOFs has been rarely studied. In this work, PCN-333 series-based BMOFs with different Fe/Al ratios were prepared by a solvothermal method at temperatures of both 135 and 150 °C. The synthesis temperature and Fe/Al ratio have significant effects on the crystal structure and specific surface area of bimetallic PCN-333, leading to the different adsorption performance of the PCN-333 for Congo red (CR). The Fe/Al-PCN-333-135(3:1) and Fe-PCN-333-150 exhibited the maximum CR adsorption capacities of 3233 and 3933 mg/g, respectively, surpassing the capacities of most previously documented adsorbents. The Langmuir model and pseudo-second-order kinetics can well describe the adsorption process of CR on Fe/Al-PCN-333-135(3:1) and Fe-PCN-333-150. Combining the isotherm adsorption behavior with the thermodynamic parameters, CR adsorption on BMOFs is a single-layer endothermic chemical adsorption. Furthermore, Fe/Al-PCN-333-135(3:1) and Fe-PCN-333-150 exhibited regenerability and reusability for three cycles with reasonable efficiency. This work is of great significance in the field of engineering BMOF materials to treat dye wastewater.

13.
BMC Geriatr ; 24(1): 159, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360610

RESUMO

BACKGROUND: This study aimed to evaluate the correlation between serum methylmalonic acid (MMA) levels and cognition function in patients with chronic kidney disease (CKD). METHODS: In this cross-sectional study, we included 537 CKD individuals aged ≥ 60-year-old with albuminuria from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Four cognitive tests including the Digit Symbol Substitution Test (DSST), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Delayed Recall and Word Learning tests, and the Animal Fluency test (AF) were performed. Associations between MMA and cognition scores were assessed with linear regression models. RESULTS: MMA level was negatively associated with residual renal function and nutrition status. After multivariate adjustment, elevated serum MMA levels were independently correlated with decline of cognition in CKD patients with albuminuria. CONCLUSION: Our study showed that higher serum MMA levels were independently associated with the presence of cognition dysfunction in CKD patients. The exact pathogenesis of MMA and cognition needs further research.


Assuntos
Disfunção Cognitiva , Insuficiência Renal Crônica , Humanos , Idoso , Inquéritos Nutricionais , Ácido Metilmalônico , Albuminúria/complicações , Albuminúria/diagnóstico , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Cognição , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico
14.
BMC Public Health ; 24(1): 526, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378516

RESUMO

BACKGROUND: Understanding the trends of tuberculosis (TB) burden and its risk factors at the provincial level in the context of global End TB targets is crucial to identify the progress and challenges in TB control. We aimed to estimate the burden of TB and risk factors for death from 2006 to 2020 for the first time in Guizhou Province, China. METHODS: Data were collected from the national TB surveillance system. Four indicators of TB burden and their corresponding age-standardized rates (ASRs), including incidence (ASIR), prevalence (ASPR), mortality (ASMR) and disability-adjusted life years (DALYs) (ASDR), were estimated and stratified by year, age, gender and prefecture. Temporal trends of ASRs were presented by locally weighted regression, and the annual percentage change was calculated. The correlation between gross domestic product (GDP) per capita and ASRs was evaluated by Pearson correlation analysis. The associated risk factors for death in PTB patients were determined using logistic regression models. RESULTS: A total of 557,476 pulmonary TB (PTB) cases and 11,234 deaths were reported, including 2233 (19.9%) TB specific deaths and 9001 (80.1%) deaths from other causes. The 15-year average incidence, prevalence and mortality rates were 94.6, 102.6 and 2.1 per 100,000 population, respectively. The average DALY rate was 0.60 per 1000 population. The ASIR and ASPR have shown downward trends since 2012, with the largest percentage decrease in 2020 (ASIR: -29.8%; ASPR: -30.5%). The number in TB specific deaths consistently decreased during the study period (P<0.001), while the increase in deaths from other causes drove the overall upward trend in ASMR and ASDR. Four ASRs remained high in males and 5 prefectures. GDP per capita was negatively associated with the ASIR, ASPR and ASDR (P<0.05). Among PTB patients, men, patients with no fixed job, those with a low GDP level, patients with increasing age, those previously treated, those with severe symptoms, those transferred in and those receiving directly observed treatment were more likely to suffer death. CONCLUSION: Guizhou has made progress in reducing PTB cases and TB specific deaths over the last 15 years. Targeted interventions are needed to address these risk factors for death in PTB patients and high-risk areas.


Assuntos
Tuberculose Pulmonar , Tuberculose , Masculino , Humanos , Fatores de Risco , Tuberculose/epidemiologia , Tuberculose Pulmonar/epidemiologia , China/epidemiologia , Anos de Vida Ajustados pela Incapacidade , Anos de Vida Ajustados por Qualidade de Vida , Carga Global da Doença , Incidência , Saúde Global
15.
Mol Genet Genomic Med ; 12(2): e2407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404237

RESUMO

BACKGROUND: Germline gain-of-function (GOF) variants in the signal transducer and activator of transcription 3 (STAT3) gene lead to a rare inherited disorder characterized by early-onset multiorgan autoimmunity. METHODS: We described a Chinese patient with infantile-onset diabetes and multiorgan autoimmunity. The patient presented with early-onset type 1 diabetes and autoimmune hypothyroidism at 7 months. During the 7.5-year follow-up, she developed pseudo-celiac enteropathy at 1 year of age and showed severe growth retardation. Whole-exome sequencing was performed and the novel variant was further assessed by in vitro functional assays. RESULTS: Whole-exome sequencing revealed a novel variant (c.1069G>A, p.Glu357Lys) in the DNA-binding domain of STAT3. In vitro functional studies revealed that p.Glu357Lys was a GOF variant by increasing STAT3 transcriptional activity and phosphorylation. In addition, the STAT3 Glu357Lys variant caused dysregulation of insulin gene expression by enhancing transcriptional inhibition of the insulin gene enhancer binding protein factor 1 (ISL1). CONCLUSION: In the current study, we describe clinical manifestations and identify a novel STAT3 GOF variant (c.1069G>A) in a Chinese patient. This activating variant impairs insulin expression by increasing transcriptional inhibition of its downstream transcription factor ISL1, which could be involved in the pathogenesis of early-onset diabetes.


Assuntos
Autoimunidade , Diabetes Mellitus , Feminino , Humanos , Autoimunidade/genética , Mutação com Ganho de Função , Insulina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
16.
Small ; : e2310568, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38239094

RESUMO

Inverted flexible perovskite cells (fPSCs) have attracted much attention for their high efficiency and power per weight. Still, the steady-state output is one of the critical factors for their commercialization. In this paper, it is found that the steady-state current of inverted fPSCs based on nickel oxide nanoparticles (n-NiOx ) continuously decreases under light illumination. Conversely, those based on magnetron-sputtered NiOx (sp-NiOx ) exhibit the opposite result. Based on visualization of ion migration in the photoluminescence (PL) imaging microscopy tests, the discrepancies in the buried surfaces lead to the differences in ion migration in perovskite films, which triggers the temporary instability of the output current of devices during operation. The DFT theoretical calculation and experimental results reveal that NiOx films with different contents of Ni vacancies can modulate the crystallization of the perovskite films on the NiOx surfaces. Tuning the crystallization of the perovskite films is essential to stabilize the output current of fPSCs at a steady state. To demonstrate that, capsaicin is doped into the perovskite solutions to improve the quality of the perovskite buried interface. Finally, the corresponding fPSCs exhibit outstanding efficiency and stability during operation. These results provide valuable scientific guidance for fabricating fPSCs with stable operation under illumination conditions.

17.
Bioorg Chem ; 144: 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218070

RESUMO

Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos
18.
Environ Toxicol ; 39(3): 1197-1209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37902164

RESUMO

Environmental arsenic exposure is a significant global public health concern. Previous studies have demonstrated the association between arsenic-induced liver injury and oxidative stress as well as ferroptosis. However, the knowledge of the interactions among these mechanisms remains limited. Moreover, there is a lack of research on potential therapeutic interventions for liver injury resulting from arsenic exposure. To address these limitations, we established a rat model with liver injury caused by arsenic exposure and investigated the impact of the nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4) signaling pathway and ferroptosis on arsenic-induced liver injury. Our findings revealed that arsenic increased Nrf2 expression and decreased GPx4 expression in the rat liver. This was accompanied by a substantial generation of reactive oxygen species and disruption of the antioxidant defense system, ultimately promoting liver injury through ferroptosis. Subsequently, we conducted intervention experiments using Rosa roxburghii Tratt (RRT) in rats exposed to arsenic. The results showed that the detrimental effects mentioned earlier were partially alleviated following RRT intervention. This study offers preliminary evidence that persistent activation of Nrf2 by arsenic triggers an adaptive antioxidant response, leading to liver injury through the promotion of ferroptosis. Additionally, we discovered that RRT inhibits Nrf2-mediated adaptive antioxidant responses by reducing hepatic ferroptosis, thereby mitigating liver injury caused by arsenic exposure in rats. Our study contributes to a deeper understanding of the molecular mechanisms underlying liver injury resulting from arsenic exposure. Furthermore, our findings may facilitate the identification of a potential edible and medicinal plant extracts that could be utilized to develop a more effective adjunctive treatment approach.


Assuntos
Arsênio , Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Ratos , Antioxidantes , Fator 2 Relacionado a NF-E2
19.
Kidney Blood Press Res ; 49(1): 38-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38043511

RESUMO

INTRODUCTION: This study aimed to investigate the prospective role of serum irisin - a novel adipo-myokine - in all-cause mortality and cardiovascular (CV) mortality in patients on peritoneal dialysis (PD). METHODS: A prospectively observational study was conducted with 154 PD patients. Baseline clinical data were collected from the medical records. Serum irisin concentrations were determined using enzyme-linked immunosorbent assay. Patients were divided into the high irisin group (serum irisin ≥113.5 ng/mL) and the low irisin group (serum irisin <113.5 ng/mL) based on the median value of serum irisin. A body composition monitor was used to monitor body composition. Cox regression analysis was utilized to find the independent risk factors of all-cause and CV mortality in PD patients. RESULTS: The median serum irisin concentration was 113.5 ng/mL (interquartile range, 106.2-119.8 ng/mL). Patients in the high irisin group had significantly higher muscle mass and carbon dioxide combining power (CO2CP) than those in the low irisin group (p < 0.05). Serum irisin was positively correlated with pulse pressure, CO2CP, and muscle mass, while negatively correlated with body fat percentage (p < 0.05). During a median of follow-up for 60.0 months, there were 55 all-cause deaths and 26 CV deaths. Patients in the high irisin group demonstrated a higher CV survival rate than those in the low irisin group (p = 0.016). Multivariate Cox regression analysis showed that high irisin level (hazard ratio [HR], 0.341; 95% confidence interval [CI], 0.135-0.858; p = 0.022), age, and diabetic mellitus were independently associated with CV mortality in PD patients. However, serum irisin level failed to demonstrate a statistically significant relationship with all-cause mortality. CONCLUSION: Low serum irisin levels at baseline were independently predictive of CV mortality but not all-cause mortality in PD patients. Therefore, serum irisin could be a potential target for monitoring CV outcomes in PD patients.


Assuntos
Doenças Cardiovasculares , Diálise Peritoneal , Humanos , Fibronectinas , Modelos de Riscos Proporcionais , Fatores de Risco
20.
Environ Toxicol ; 39(3): 1350-1359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966059

RESUMO

Arsenic is a well-known environmental toxicant and emerging evidence suggests that arsenic exposure has potential skeletal muscle toxicity; however, the underlying mechanism has not yet been clarified. The aim of this study was to investigate the correlation among adverse effects of subchronic and chronic environmental arsenic exposure on skeletal muscle as well as specific myokines secretion and angiotensin II (AngII)-melatonin (MT) axis in rats. Four-week-old rats were exposed to arsenite (iAs) in drinking water at environmental relevant concentration of 10 ppm for 3 or 9 months. Results indicated that the gastrocnemius muscle had atrophied and its mass was decreased in rats exposed to arsenite for 9 months, whereas, they had no significant changes in rats exposed to arsenite for 3 months. The levels of serum-specific myokine irisin and gastrocnemius muscle insulin-like growth factor-1 (IGF-1) were increased in 3-month exposure group and decreased in 9-month exposure group, while serum myostatin (MSTN) was increased significantly in 9-month exposure group. In addition, serum AngII level increased both in 3- and 9-month exposure groups, while serum MT level increased in 3-month exposure group and decreased in 9-month exposure group. Importantly, the ratio of AngII to MT level in serum increased gradually with the prolongation of arsenite exposure. It showed a certain correlation between AngII-MT axis and gastrocnemius muscle mass, gastrocnemius muscle level of IGF-1 or serum levels of irisin and MSTN. In conclusion, the disruption of AngII-MT axis balance may be a significant factor for skeletal muscle atrophy induced by chronic environmental arsenic exposure.


Assuntos
Arsênio , Arsenitos , Melatonina , Ratos , Animais , Angiotensina II , Fator de Crescimento Insulin-Like I , Melatonina/farmacologia , Arsenitos/toxicidade , Fibronectinas , Músculo Esquelético , Atrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...